Community Consolidated School District 46 565 Frederick Road, Grayslake, IL 60030		
23-24 Algebra Priority Standards @ 2023 All rights reserved by CCSD 46. Do not copy without permission.		
Trimester 1	Trimester 2	Trimester 3
Seeing Structure in Expressions	Interpreting Functions	Seeing Structure in Expressions
Interpret parts of an expression, such as terms, factors, and coefficients.	Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range.	Use the structure of an expression to identify ways to rewrite it.
Reasoning with Equations \& Inequalities	Graph square root, cube root, and absolute value functions.	Write expressions in equivalent forms to solve problems by factoring quadratic expression to reveal the zeros of the function it defines.
Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.	Building Functions	Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.
Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.	Identify the effect on the graph of replacing $f(x)$ by $f(x)+k$, $k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative).	Reasoning with Equations \& Inequalities
Graph the solutions to a linear inequality in two variables on a coordinate plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.	Reasoning with Equations \& Inequalities	Solve quadratic equations by inspection (e.g., for $\mathrm{x} 2=$ 49), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation.
Explain why the x-coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$.	Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.	Interpreting Functions
Creating Equations		For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities.
Create equations and inequalities in one variable.		Arithmetic with Polynomials \& Rational Expressions
Use equations and inequalities to to solve problems.		Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.		Understand the relationship between zeros and factors of polynomials, and know and apply the remainder theorem.
Represent (graph) constraints by [equations] or inequalities, and by [systems of equations] and/or inequalities		Statistics \& Probability
Interpret solution sets as viable or non- viable options in a modeling context.		Interpret the sloe and the intercept of a linear model in the context of the data. Compute and interpret the correlation coefficient of a linear fit. Distinguish between correlation and causation. Combined to: Distinguished between correlation and causation and recognize possible associations and trends in the data.
Create equations and inequalities in one variable and use them to solve problems.		
Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.		
Transform linear equations/formulas to solve for specific variables.		
Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non- viable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods.		
Interpreting Functions		
Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval.		

